
mehratomige Gasmoleküle wie H2 , N2 , CO und C0 2 

beeinflussen die Energie der freien Elektronen und 
damit die E A W in ähnlicher Weise wie H20-Dampf 
oder 0 2 , wie orientierende Versuche gezeigt haben. 

Infolge der beiden Anlagerungsmechanismen müs-
sen im Gasraum zunächst auch zwei Ionengruppen 
mit unterschiedlicher Beweglichkeit entstehen. Selbst 
wenn man, wie bei unserer Apparatur, aus den Os-
zillogrammen nur eine mittlere Beweglichkeit ermit-
teln kann, wäre zu erwarten gewesen, daß diese sich 
aus den oben erwähnten Gründen mit der Feldstärke 
ändert. Die Beweglichkeit ist aber nach den Ver-

suchen unabhängig von der Feldstärke. Das läßt sich 
folgendermaßen erklären: Die durch Dissoziation 
oder Elektronenanlagerung anfänglich entstandenen 
Ionen können wegen der häufigen Zusammenstöße 
mit den Gaspartikeln in Bruchteilen von Millisekun-
den leicht auf Moleküle niedrigerer Bildungsenergie 
umladen. Die Beweglichkeit dieser energetisch stabi-
leren Ionen wird durch das angelegte elektrische 
Feld nicht beeinflußt. 

Herrn Dr. T A U B E R T und Herrn Dr. F U C H S danken 
wir für die im Laboratorium für Massenspektrometrie 
ausgeführten Gasanalvsen. 

Der Stromanstieg einer Townsend-Entladung 
unter dem Einfluß der Raumladung 
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Institut für Angewandte Physik der Universität Hamburg 
(Z. Naturforschg. 19 a, 245—253 [1961] ; eingegangen am 16. Oktober 1963) 

Ausgehend von den Grundgleichungen (TowxsENDsche Differential-Gleichungen, Nachlieferungs-
und PoissoN-Gleichung) wird ein Gleichungssystem entwickelt, aus dem die Ortskoordinate x elimi-
niert ist, und das die gesuchten Ströme J + (t) und / _ (£) über die Variable t miteinander in Ver-
bindung bringt. Nach Umformen dieses Gleichungssystems können die für Differentialgleichungen 
üblichen Lösungsverfahren benutzt werden. Gegenüber einer früheren Ausrechnung des Verfassers 1 

kann das Verfahren für eine Vielzahl von Anfangsbedingungen (Lichtblitz, konstante Einstrahlung, 
schwache Einstrahlung, statischer Durchbruch, Über- oder Unterspannung) benutzt werden. Die 
Behandlung von Beispielen gibt eine Übersicht über die diversen Möglichkeiten und zeigt die 
Brauchbarkeit des Verfahrens. Interessant ist der Übergang von Stromanstiegen mit unterschied-
lichen Anfangsbedingungen in einen einheitlichen Verlauf (asymptotische Form) ; dieser Übergang 
ist theoretisch zu erwarten und wird durch Experimente belegt. 

Bei experimentellen Untersuchungen des zeitlichen 
Stromanstiegs einer TowNSEND-Entladung2-0 war 
festgestellt worden, daß sich mit Erreichen einer ge-
wissen Stromstärke ein charakteristischer Anstieg 
einstellt. Dabei zeigen sich zunächst nur geringe 
Abweichungen vom normalen Verlauf; mit wachsen-
der Stromstärke wird dann der Anstieg zunehmend 
steiler. Als Ursache für diesen charakteristischen 
Anstieg ergab sich das durch Raumladung der posi-
tiven Ionen verzerrte Feld, in dem die Elektronen-
lawinen eine erhöhte Gasverstärkung erlangen. Eines 
dieser experimentellen Beispiele4 war schon früher 
theoretisch behandelt worden, indem aus den Grund-
gleichungen (TowNSENDsche Differentialgleichungen. 
PoissoN-Gleichung) eine Differentialgleichung für 

1 W . KÖHRMANN. Z . Angew. Phys. 1 1 , 414 [1959]. 
2 H . W . BÄNDEL, P h y s . R e v . 9 5 , 1 1 1 7 [ 1 9 5 4 ] . 
3 R. KLUCKOW, Z . Phys. 118. 564 [1957]. 
4 H. M I E L K E , Z . Angew. Phys. 11, 409 [1959], 

den Stromanstieg aufgestellt wurde1 . In der Zwi-
schenzeit wurden in 6 ebenfalls gemessene Strom-
anstiege unter Berücksichtigung der Raumladung 
theoretisch behandelt. In 7 wurde die IonenabwTan-
derung bei der Berechnung des Stromanstieges be-
rücksichtigt; dies ermöglichte eine durchgehende 
Beschreibung des Stromanstieges vom Start cler aus-
lösenden Elektronen bis zum steilen, zum Durch-
bruch führenden Anstieg. 

In der vorliegenden Arbeit wird ein allgemeines 
Gleichungssystem für den Stromanstieg hergeleitet; 
es läßt sich für eine Vielzahl von Entladungsbedin-
gungen benutzen, wie die hier angeführten Beispiele 
zeigen. 

3 H . HOGER, Dielectrics 1 , 9 4 [ 1 9 6 3 ] . 
8 J. PFAUE, Z . Angew. Phys. 1 6 . 15 [1963]. 
7 H . SCHLUMBOHM, D i s s e r t a t i o n , H a m b u r g 1 9 6 1 . 
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1. Gleichungen für den Stromanstieg 

Die Herleitung der Grundgleichungen wird unter 
Anwendung von folgenden Vereinfachungen vorge-
nommen : 

1. In dem homogenen Feld einer Plattenfunken-
strecke sind Trägerstrom bzw. Trägerdichte in radia-
ler Richtung gleichmäßig über die Entladungsstrecke 
verteilt. Somit tritt nur x als Ortskoordinate auf. 

2. Die an die Entladungsstrecke gelegte Spannung 
bleibt zeitlich konstant; demnach muß der Span-
nungsabfall am äußeren Widerstand vernachlässig-
bar klein sein. 

3. Bei Beschränkung auf kleine E/p-Werte (gro-
ßes p d) kann für a/p der Ausdruck 

a/p = A(E/p-B)2 

benutzt werden. Die Feldstärke-Änderungen (her-
vorgerufen durch die Raumladung der positiven 
Ionen) sollen gering sein; unter diesen Umständen 
werden die Driftgeschwindigkeiten v_ der Elektro-
nen und v+ der Ionen als konstant angenommen. — 
Als Extremfall (etwa bei dem in Abschnitt 5 disku-
tierten ymax) können folgende Werte auftreten: 

E{0)/E(d)^ 1,15, < x ( 0 ) / a ( r f ) « 3 . 

4. Die zeitliche Änderung von a in einem Inter-
vall der Länge T _ soll gering sein. 

In den Gin. ( 1 ) , (2) und (3) ist f i(x,t)dx 
o 

die unter dem Einfluß der Raumladung modifizierte 
Gasverstärkung; wir übernehmen hier den schon 
in 1 benutzten Zusammenhang (4) mit / + (t) (siehe 
auch 8 ) , den man aus der Anwendung der P O I S S O N -

Gleiehung und des oben angegebenen analytischen 

8 A . v. ENGEL U. M . STEENBECK, Elektrische Gasentladungen, 
Springer-Verlag, Berlin 1934. 

5. Als Nachlieferungsmechanismus nehmen wir 
ausschließlich Photoeffekt an der Kathode an, ent-
sprechend den experimentellen Beispielen. Dabei 
wird der Koeffizient yph = <3/a als konstant angesetzt. 

Auf der Basis dieser Vereinfachungen wird im An-
hang 1 aus den Grundgleichungen (TowNSENDsche 
Differentialgleichungen, Nachlieferungsgleichung) 
das folgende Gleichungssystem ( 1 ) , ( 2 ) , (3) her-
geleitet. Es bringt die im Außenkreis fließenden 
Stromanteile (Stromdichten) der Elektronen J_ (l) 
und der Ionen ] + (t) in Zusammenhang mit dem 
die Kathode verlassenden Elektronenstrom j_ (0, t). 
Eine anschauliche Deutung der Gin. ( 1 ) , ( 2 ) , (3) 
erhält man durch folgendes Modell : Alle Ionen, 
Elektronen und Photonen werden an der Stelle 
x = d — a ( ) - 1 erzeugt. Die Laufzeit der Elektronen-
lawinen bis zu diesem Punkt ist (bei unverzögerter 
Lawinenentwicklung) 7ph = T_ { 1 - ( O e d ) " 1 } . Die 
Gl. (1) beschreibt die zeitliche Entwicklung von 
j-(0,t); dabei ist jr{t) der durch Fremdeinstrah-
lung an der Kathode ausgelöste Fremdstrom. In der 
Gl. (2) wird der Elektronenstrom ] _ (z) dargestellt, 
bei Vernachlässigung der Laufzeit der Elektronen 
vom Erzeugungsort bis zur Anode. Die Gl. (3 ) be-
schreibt die zeitliche Entwicklung des Ionenstromes 
/+ ( 0 ; sie wird gewonnen aus der Ionenbewegung 
(mit der Geschwindigkeit v + ) von der Stelle 
x = d — bis zur Kathode, wrofür die Zeit 
T\ = T + { l — (a0 d) - 1 } benötigt wird. 

(1) 

(2) 

(3) 

Ausdrucks für a/p erhält [/£+ siehe Gl. ( 3 . 1 ) ] : 
d 

f a(x, t) d x - a 0 c ? = K% J% (t) . (4) 
o 

Da die Ausrechnung mit den Funktionalgleichun-
gen ( 1 ) , (2) und (3) einige Schwierigkeiten be-
reitet, wollen wir im folgenden eine Umformung 
auf Differentialgleichungen vornehmen. Aus Grün-
den der Stetigkeit setzen wir voraus, daß y'p (t) nur 
bei £ = 0 eine ^-Funktion enthalten möge; daher 

d 
j-(0,t) =jF(t) + / * p h / - ( 0 , « - r p h ) exp [fa(x,t-Tph) dx-a0d], = » [ e x p a0 d - 1] , 

ö 

/ - ( 0 = e x p a ? " j-(0,t-Tvh) exp [fa(x,t-Tvh) d x-a0d], 
a ° d o 

d J+(t) = exp«, d r , _ ( ( U _ 7 p ö ) ezp[lda(x,t-Tvh) d x-a0d] 
dt 1 + 0 

d 
- / ' _ (0, t - Ti- r p h ) e\p[f a(x,t-Ti-Tph) da ; -a 0 r f ] } . 

o 



schreiben wir: jy(t) = q d (t) + jy* ( 0 . Durch Ein-
setzen von (2) in (1) und Benutzung von (4) ent-
steht zunächst (x = In ,«ph) : 

J-(t + Tph) = / _ ( « ) exp {x + K% J% (t) } (5) 

+ £ (t) e x p ^ exp{K%J%(t)}. a0 d 

Durch lineare Entwicklung des Gliedes J - (t + T ^ ) 
und der rechts bei / _ (£) stehenden Exponentialfunk-
tion erhält man die Gl. ( 6 ) . Der bei /p* (t) stehende 
Faktor exp {K^+J2-. {t)} darf gleich 1 gesetzt wer-
den, da der Term /F*(J) nur im Anfangsstadium 
eine Rolle spielt, in dem sich noch keine nennens-
werte Raumladung gebildet hat. — Die Gl. (7) ent-
steht durch Einführung von (2) in ( 3 ) . 

d7,/(° = (t) {x + K% J\ (0 } + fF (t) 
d* TPh a0 d 

(6) 

= a°d
+ V-ID-JAT-M, ( 7 ) 

/- (rph) = ®xp q» JATvh)=o. (8) l ph a0 a 

Die Anfangsbedingung (8) für J + (t) erhält man 
aus dem oben geschilderten Modell, das die Ionen-
erzeugung bei t = Tv\y einsetzen läßt. Die Anfangs-
bedingung für J-{t) gewinnt man aus der Forde-
rung, daß / _ (0, t) für t—>0 in den raumladungs-
freien Verlauf [siehe Gl. ( 2 . 2 ) ] übergeht. 

Wir haben damit ein System von Differential-
gleichungen für die beiden interessierenden Funk-
tionen / _ (f) und J+ (t) gewonnen. Eine Abweichung 
von der üblichen Form einer Differentialgleichung 
entsteht durch den retardierten Term J_{t — Ti) in 
Gl. ( 7 ) . - Mit (6) und (7) werden die in Ab-
schnitt 3 gebrachten theoretischen Kurven unter Be-
nutzung des im Anhang 3 beschriebenen Verfahrens 
berechnet. Bei bestimmten Voraussetzungen ergeben 
sich einfache Lösungen, wie im folgenden Abschnitt 
2 gezeigt wird. 

2. Asymptotische Lösungen 

Es soll gezeigt werden, daß alle zum Durchbruch 
führenden Stromanstiege mit wachsender Strom-
stärke in einen einheitlichen Verlauf übergehen. 
Dieser Verlauf ist unabhängig von speziellen Be-
dingungen wie Einstrahlung und Überspannung. 

Wir gehen aus von dem Gleichungssystem ( 6 ) , 
(7) und setzen zunächst x 0 voraus. Es zeigt sich, 

daß im Laufe der Entladungsentwicklung der Elek-
tronenstrom / _ (t) so groß wird, daß die Unglei-
chung 

/.«) >JAt-Tl) (9) 
erfüllt ist. Dadurch entsteht aus Gl. (7) : 

dJ+Jl) =(a0d/T+)J-(t) • (10) 
di 

Sieht man von einem extrem ungünstigen Verlauf 
von y'p* (t) ab, so darf zu diesem Zeitpunkt der Term 
mit y'p* (t) in Gl. (6) vernachlässigt werden. Dann 
entsteht durch Einführung von (10) in (6) die 
Differentialgleichung 2. Ordnung für J + (t) : 

d'2J:!n = T-,} dJ: « {y. + K\J\ [t) } . (11) 

cu- cu 

In normierter Schreibung (vgl. Anhang 3) lautet sie 

•y{x)=y{T){x + y*{T)}. (12) 
Durch Integration über r gewinnt man aus (12) 
eine Differentialgleichung 1. Ordnung: 
y(r)-{xy(r) + ^ 3 ( r ) } 

= H r i ) - { x y ( T 1 ) + i y 3 ( T 1 ) } = a . (13) 

Wie nun die Gl. (13) unmittelbar zeigt, tritt mit 
wachsendem y an einer Stelle r = r2 der Fall ein, 
daß die Glieder y(r2) bzw. {x y (r2) + ^ y3 (T2) } 
groß sind gegen a. Wir können demnach für T > T 2 

die linke Seite von (13) gleich Null setzen. Die vor-
stehend geschilderte Entwicklung tritt für x ^ 0 
immer ein; für > i < 0 ist es in gewissen Fällen mög-
lich, daß die dafür erforderlichen Bedingungen er-
füllt sind. Dann gelten die folgenden Betrachtungen 
sinngemäß. — Die Lösungen der Gl. (13) (linke Seite 
gleich Null gesetzt) mit der Anfangsbedingung 
y (T2) = b sind: 

?/ = & ( 3 * ) 1 / s { ( 3 * + &2) exp[2 x(T2 — T) ] - b2}~1/s 

= (3 x)1/2 {exp [2 x (too — r) ] — l } - 1 / j , M = 0 ) , (14) 

y = b{l-§b2(z-r2)}-1/2 

= (f)Vl{roo-r}-1/l. (x = 0). (15) 

Die linke Seite der Gin. (14) und (15) zeigt un-
mittelbar, daß y(r) für einen gewissen Wert r ^ 
singulär wird. Auf der rechten Seite sind die Glei-
chungen dann auf r ^ — r als Argument umgeschrie-
ben. 

Weiter soll das Verhalten der durch (14) gege-
benen Funktionen für wachsendes y diskutiert wer-
den. Die analytische Entwicklung der Exponential-
funktion in (14) zeigt, daß bei r ^ — r - ^ 0 ( d . h . 



für y —> oo) sich alle Funktionen mit y. 4= 0 asym-
ptotisch der durch (15) gegebenen Funktion (x = 0) 
nähern. Dieses Verhalten läßt sich auch an Hand 
der Differentialgleichung (12) erklären: der Faktor 
x + y~ zeigt daß mit wachsendem y der Einfluß 
von ^ auf den Funktionsverlauf geringer wird. 

In den vorangehenden Gleichungen wurde jeweils 
nur der Ionenanteil des Stromes betrachtet. Den 
Elektronenanteil gewinnt man aus 

yjr) =zM=K_J_(t); 

es ist verständlich, daß der Differentialquotient y a (r) 
das gleiche asymptotische Verhalten wie 2/a(T) hat-
Somit gelten diese Betrachtungen nicht nur für den 
Ionenanteil, sondern auch für den Elektronenanteil 
und damit für den Gesamtstrom. 

Es ist nun interessant, dieses asymptotische Ver-
halten an einem experimentellen Beispiel zu studie-
ren. Bei kontinuierlicher UV-Bestrahlung der Ka-
thode wurde eine Schar von Stromanstiegen gemes-
sen 2, wobei die Überspannung ( d . h . x = ln /aph) 
als Parameter variiert Avurde. Gegenüber der Origi-
nal-Auftragung. bei der als Nullpunkt der Zeitachse 
das Anlegen der Spannung gewählt wurde, sind in 
Abb. 1 die Einzelkurven in zeitlicher Richtung ver-
schoben worden. Es entsteht dadurch eine Schar von 
sich nähernden Kurven, die bei großen Stromstärken 
zusammenlaufen. In Abb. 1 ist außerdem der berech-
nete Stromverlauf in der asymptotischen Form 

I(t) =F{K~1 y^ir) + KZ1zM}, (16) 

y M = ( i ) , / s { T O O - T } " * , z a ( r) = ( f ) , / l {too — T} - , / * , 

(F = Querschnitt der Entladung), gestrichelt einge-
zeichnet; diese Kurve verläuft in der letzten Phase 
mit den gemessenen Stromverläufen zusammen. 

Eine weitere Anwendung der asymptotischen Lö-
sung zur Beschreibung des Stromanstieges findet 
sich in 6 ; dort wird gezeigt, daß die anfänglich sta-
tistisch schwankenden Stromanstiege unter dem Ein-
fluß der Raumladung in einen einheitlichen Verlauf 
übergehen. 

3. Experimentelle Beispiele 

a) Messungen mit ö-förmiger Einstrahlung 

Als Beispiel betrachten wir einen in Wasserstoff 
gemessenen Stromanstieg9. Im Gegensatz zu dem 
in ' behandelten Beispiel mit / / p h ~ l ist hier jupj, 

9 R. KLUCKOW, Z. Phys. 161, 353 [1961], 
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Abb . 1. Experimenteller Nachweis des asymptotischen Verhal-
tens. Messungen in trockener Luft 2 (Abb . 2 ) , Daten der Mes-
sung siehe A b b . 4. Durch Verschieben der Zeitskala wurden 
die Meßkurven ( ) im letzten Abschnitt zur Deckung 
gebracht. Berechneter Strom in der asymptotischen 

Form gemäß Gl. (16 ) . 

wesentlich von 1 verschieden. — Die Berechnung 
des Stromanstieges für diese Bedingungen ist ein 
interessantes Beispiel für das Wirken der Raum-
ladung. An den in Abb. 2 zusammengestellten Kur-
ven läßt sich das Zusammenspiel von J + (t) und 
/ _ (t) gemäß den Gin. (6) und (7) studieren. So 
fällt zunächst der Elektronenstrom / _ (z) (wegen 
y.<. 0) und entsprechend hat J + (t) einen gekrümm-
ten Verlauf mit negativem 2. Differentialquotienten. 
Bei t = Tj macht sich die einsetzende Ionenabwande-
rung als Knick bemerkbar. Um den Stromanstieg 
zum Durchschlag zu führen, muß der Faktor 

In juvh + K% J% (t) =x + y2(r) (17) 

in Gl. (6) positiv werden (siehe auch rechte Skala 
in Abb. 2 ) . Dies tritt bei den Kurven a und b ein. 
nicht dagegen bei der Kurve c, die daher nicht zum 
Durchschlag führt. — Auf die Bedeutung des Fak-
tors (17) für das Zustandekommen des Durchschlags 
wurde schon in 9 hingewiesen. 

Setzt man die Anteile / + (t) und / _ ( 0 zum Ge-
samtstrom zusammen, so ergibt sich ein relativ glat-
ter Verlauf, der nicht mehr die eben geschilderten 
Details erkennen läßt. Die Kurven a und b in Abb. 3 
geben qualitativ den gemessenen Verlauf wieder 
(vgl. Abb. 9 bis 12 in 9 ) . Auf einen direkten Ver-
gleich von gemessenem und berechnetem Stromver-
lauf wird verzichtet wegen der Schwierigkeit in der 
Wahl der richtigen Parameter N und x. Außerdem 
wird in diesem Falle mit 2 / m a x ~ l der allgemeine 



Abb. 2 (oben) und 3 (unten). Berechneter Strom im Wasser-
stoff (p = 330 Torr, d = '2,5 cm, 0 ,2) . Auslösung der 

Primärelektronen durch Lichtblitz: (t) =7V qe Ö(t), 
a: N—6,5 • 105, b: N = 5,8-105, c : V = 5,5-103. 

Gültigkeitsbereich unserer Lösungen überschritten, 
so daß die in Abb. 3 gezeigten Kurven in ihrem 
letzten Stück nur qualitativen Charakter haben. 

b) Messungen mit konstanter Einstrahlung 

Wir betrachten einen in trockener Luft gemesse-
nen Stromanstieg2. An der Kathode wurden durch 
Bestrahlen mit einer UV-Lichtquelle n0 Elektronen 
pro sec ausgelöst; demnach ist j-p (t) = j0 = (n0 qe) /F. 
Der Zeitnullpunkt in den Oszillogrammen ist durch 
das Anschalten der Spannung gegeben. Es wurden 
Stromanstiege mit verschiedener Überspannung in 
der Nähe der statischen Durchbruchspannung auf-
genommen (vgl. Abb. 1) . Als Beispiel betrachten 
wir den nach 35 jusec zum Durchbruch führenden 
Stromanstieg. In der halblogarithmischen Auftra-
gung (Abb. 4) steigt der gemessene Strom bis etwa 
T+ steil an und geht dann in einen flachen Teil 
über; daraus entwickelt sich dann der immer steiler 
werdende, zum Durchbruch führende Anstieg des 
Stromes. 

Bei der folgenden Auswertung wird ein gegen-
über T0 = T _ {1 — (a0 d)~1} vergrößerter Genera-
tionsabstand benutzt. Dies war erforderlich, da frü-
here Untersuchungen in trockener Luft 4' 10 eine ver-
zögerte Lawinenentwicklung gezeigt hatten. Der 
hier benutzte Wert T ^ = 1,5' 10~7 sec folgt aus 
Aufbauzeit-Messungen 11. 

10 L. FROMMHOLD, Z . Phys. 1 6 0 , 554 [1960] . 
1 1 W . K Ö H R M A N N , Z . Angew. Phys. 7, 1 8 7 [ 1 9 5 5 ] ; Ann. Phys., 

Lpz. 18, 379 [1956], 

Zunächst wird der Stromverlauf / + , / _ und 
/+ + / _ ohne Berücksichtigung von Raumladungs-
wirkung gemäß den in Anhang 2 gegebenen For-
meln berechnet. Dabei setzen wir x = \n /vph = 0,009, 
womit sich die günstigste Anpassung an den an-
fänglichen (raumladungsfreien) Verlauf der Meß-
kurve ergibt. Sodann wird eine vollständige Berech-
nung des Stromverlaufes mittels der Gin. (6) und 
(7) nach dem in Anhang 3 geschilderten numeri-
schen Verfahren ausgeführt. Die Ergebnisse dieser 
Rechnung sind in Abb. 4 aufgetragen und werden 
dort mit dem experimentellen Verlauf verglichen. 
Die gute Übereinstimmung zwischen Messung und 
Rechnung zeigt, daß als Sekundäreffekt allein photo-
elektrische Auslösung an der Kathode in Frage 
kommt und nicht anteilige Nachlieferung mit y + -
Effekt, wie dies von anderer Seite zur Erklärung des 
Stromanstiegs angenommen wurde 12. 

Abb. 4. Stromanstieg in trockener Luft 2 (p = 724 Torr, d = 
1 cm, U ~ 2 8 , 6 kV, rc0 = 6 0 Elektronen/^sec, 7 ' ; = 1 5 /usee), 

M = Meßkurve, berechneter Stromverlauf 
( ohne Raumladung). 

c) Messungen mit schwacher Einstrahlung 

Bei diesen Untersuchungen3-5 wird bei der sta-
tischen Durchbruchspannung (/̂ ph = 1) die Kathode 
der Entladungsstrecke mit einer stark reduzierten 
UV-Lichtquelle bestrahlt, so daß nur einzelne Photo-
elektronen mit großem zeitlichen Abstand (10~3 bis 

1 2 Y . M I Y O S H I , Phys. Rev. 1 1 7 , 3 5 5 [ I 9 6 0 ] , - A . L. W A R D , 
Proc. V. Intern. Conf. Ionization Phenomena in Gases, 
München 1961, Vol. II, p. 1595. 



1 sec) ausgelöst werden. Der Durchschlag wird durch 
eine (unendlich lange) Lawinenkette erzeugt, die in 
der A>ten Generation 2 k — 1 Elektronenlawinen ent-
hält 13. Demnach können wir die Ausrechnung mit-
tels der Gin. (6) und (7) vornehmen, indem wir 
setzen: 

hit) =j0 = 2qe/(TphF) . 
In den meisten Fällen ist jedoch eine einfachere 

Berechnung möglich. So wurde in 1 der Strom-
anstieg bei Vernachlässigung der Ionenabwanderung 
[d .h . des Termes J_(t—T{) in Gl. ( 7 ) ] berechnet. 
In 5 wurde gezeigt, daß die asymptotische Lösung 
(16) zur Auswertung von Stromanstiegen, ausgelöst 
durch schwache Einstrahlung, brauchbar ist. 

4. Die Berechnung der Aufbauzeit beim 
To wnsend-Aufbau 

Die Messung der Aufbauzeit geschieht in der 
Weise, daß an die Entladungsstrecke ein Spannungs-
impuls gelegt wird und mit einem Oszillographen 
die Zeitspanne vom Anlegen der Spannung bis zum 
Zusammenbruch gemessen wird (vgl. 1 4 ) . Für 
die Analyse der Messungen ist eine Berechnung der 
Aufbauzeit erforderlich. Diese läßt sich in der Weise 
durchführen, daß der Stromanstieg vom Einschalten 
der Spannung über den raumladungsfreien bzw. 
raumladungsbeeinflußten Bereich des Anstiegs bis 
zur Spannungsabsenkung ausgeredinet wird. Bei den 
folgenden Betrachtungen beschränken wir uns auf 
Nachlieferung durch » - E f f e k t . 

Zunächst betrachten wir den Stromverlauf im 
raumladungsfreien Teil des Anstiegs. Die hierfür 
im Anhang 2 angegebenen Formeln werden dadurch 
vereinfacht, daß mit Überspannung (?<>0) gearbei-
tet wird. Dadurch entfallen (von extrem kleinen 
Überspannungen abgesehen) in den Gin. (2.5) bzw. 
(2.7) für / + (t) alle Glieder mit Ausnahme des Ex-
ponentialtermes. Wir haben nun mit Gl. (14) schon 
einen Stromverlauf y(x)=K+J+(t) beschrieben, 
der im raumladungsfreien Teil exponentiell ansteigt: 

y { r) = ( 3 x ) 1 / 8 e x p { ^ ( r - r o c ) } . (18) 

Wir können daher die Gl. (14) benutzen, um den 
Stromverlauf im Raumladungsbereich zu beschrei-
ben. In Abb. 5 ist ein Beispiel für die Entwicklung 
des Stromes vom Einschalten der Spannung bis zum 
Zusammenbruch dargestellt. Die Entladung wird zur 

Zeit t = 0 durch 102 an der Kathode ausgelöste Elek-
tronen gestartet. Der größte Teil des Stromanstieges 
läuft ohne Raumladungseinfluß ab. Nur im letzten 
Abschnitt wird die Raumladung wirksam; dieser 
Teil des Stromverlaufes ist mit gedehntem Zeitmaß-
stab aufgezeichnet. 

Abb. 5. Zur Berechnung von Aufbauzeiten. Berechneter Strom-
und Spannungsverlauf in Wasserstoff (p = 500 Torr. d = 2 cm, 
£ / D = 1 9 , 8 K V ) , zlf7/£/D = 0 , 2 % , * = ln ^ = 0 , 1 0 5 . Ersatz-
schaltbild für den äußeren Stromkreis der Entladungsstrecke: 

/ ? = 4 8 5 ü, C = 2 8 pF. 

Aus dem Verlauf des Gesamtstromes J + (t) + J_(t) 
ergibt sich der Spannungsverlauf an der Entladungs-
strecke C, wenn man das angegebene Ersatzschaltbild 
zugrunde legt. Umgekehrt bleibt der Einfluß der 
Spannungsabsenkung auf den Stromverlauf unbe-
rücksichtigt. Grundsätzlich wird dabei der Gültig-
keitsbereich unserer analytischen Lösung y = K+ / + 
überschritten, so daß der angegebene Stromverlauf 
im letzten Abschnitt nur qualitativen Charakter hat. 
Vergleicht man jedoch die Zeitabschnitte für den 
raumladungsfreien und den raumladungsbedingten 
Teil des Anstiegs, so sieht man. daß ein Fehler im 
letzten Teil des Anstiegs für die Länge der Aufbau-
zeit ohne Bedeutung ist. Eine genaue Ausrech-
nung, die unbeschränkt bis zu höheren Stromstärken 
gültig ist, und bei der die Spannungsabsenkung be-
rücksichtigt wird, findet sich in einer folgenden Ver-
öffentlichung des Autors 15 (siehe auch Abschnitt 5 ) . 

Als Endpunkt der Aufbauzeit T\ setzen wir das 
durch Gl. (14) definierte r x an, das sich kaum von 

1 3 W . L E G L E R , Z . Phys. 1 4 0 , 2 2 1 [ 1 9 5 5 ] . 
1 4 H . D E H N E , W . KÖHRMANN U. H . L E N N E , Dielectrics 1 , 1 2 9 [ 1 9 6 3 ] . 

1 5 W . K Ö H R M A N N , Z . Naturforschg. 1 9 a, [ 1 9 6 4 ] , im Druck. 



dem Zeitpunkt unterscheidet, an dem die erste merk-
liche Spannungsabsenkung zu beobachten ist. Aus 
Gl. (18) ergibt sich (vgl. auch Abb. 8 in 14) : 

V (too) = (3 * ) 1 / s . 

Somit braucht nur der Verlauf von y (r) = K + ] + ( j ) 
(Anteil der positiven Ionen) ohne Berücksichtigung 
der Raumladung berechnet werden. Unter Verwen-
dung von 

Vs { A p dX-1!'- s0 p 
12 ) T + 

J+(TA) = (3xy,'K+1=(3x) (19) 

ergibt sich dann die Aufbauzeit T\ . Bisher wurde 
bei der Berechnung der Aufbauzeit allein der raum-
ladungsfreie Stromanstieg berücksichtigt; durch Ver-
gleich mit experimentellen Aufbauzeiten konnte eine 
kritische Stromdichte bestimmt werden 16. In Gegen-
satz zu diesem empirischen Kriterium basiert die 
hier abgeleitete Formel (19) auf einer expliziten 
Ausrechnung des Stromes im Raumladungrsbereich. 

5. Gültigkeitsbereich 

Eine Abschätzung der maximalen Stromdichte, bis 
zu der das hier gebrachte Verfahren benutzt werden 
darf, ließe sich mit Hilfe einer kritischen Betrach-
tung des Rechnungsganges durchführen. Es wären 
insbesondere die Näherungen zu diskutieren, die bei 
der Herleitung der Gin. ( 1 ) , (2) und (3) gemacht 
wurden 17. Die Abschätzung der maximalen Strom-
dichte wird hier jedoch in anderer Weise vorgenom-
men. Ein mit den Gin. (6) und (7) berechneter 
Stromverlauf (Methode A ) wird mit der Ausrech-
nung nach einer exakten Methode (N) verglichen. 
Bei dieser Methode werden für eine Folge von Zeit-
punkten tn die Stromdichten / _ (x, tn) und j + (x, tn) 
mit Hilfe der TowxsENDschen Differentialgleichun-

gen sukzessive berechnet. Dafür werden die Koeffi-
zienten a(x, tn), v_(x,tn) und v+{x,tn) benötigt, 
die Funktionen von E(x,tn) sind. Die Feldstärke 
E(x,tn) wird für jeden Zeitpunkt tn mittels der 
PoissoN-Gleichung bestimmt1 5 . 

Die exakte Ausrechnung wird für das in Abb. 4 
dargestellte Beispiel vorgenommen. Der Vergleich 
zeigt folgendes: Der Ionenstrom J+(t) hat nach 
beiden Verfahren praktisch den gleichen Verlauf; 
beim Elektronenstrom J _ (t) ist der nach A berech-
nete Verlauf / '^merklich kleiner als der nach N be-
rechnete Strom J^L. Die Ursache hierfür ist in der 
ungünstigen Näherung zu suchen, die im Anhang 1 
[Gl. (2) ] für den Elektronenstrom hergeleitet wurde. 
Folgende Angaben mögen diese Abweichung charak-
terisieren : 

y = K+ J + 
d 

f a dx — a0 d=y2 
0 

0,2 0,04 1.06 
0,4 0,16 1,3 
0,7 0,49 1,5 

Das an diesem speziellen Beispiel gewonnene Er-
gebnis darf ohne weiteres verallgemeinert werden, 
da nach Abschnitt 2 alle Stromanstiege mit unter-
schiedlichem Anfangsverlauf bei großen Stromstär-
ken in einen einheitlichen Verlauf übergehen. Der 
Grad der Abweichung ist offenbar durch die 
Feldverzerrung bestimmt. Als Maß hierfür können 

d 
wir y = K+J+ bzw. / a d x — a 0 d benutzen. Läßt 

o 
man für den Gesamtstrom J + + / _ einen Fehler von 
20% zu, so ergeben sich für die hier behandelten 
Beispiele folgende maximalen z/-Werte 1 8 : 

A b b . 

2, 
1 und 4 
3 und 5 

ynuix 
0 . 5 5 
0 , 6 5 

Anhang 1: 
Herleitung der Funktionalgleichungen 

Folgende Lösungsansätze befriedigen d ie TowNSENDSchen Differentialgleichungen und die zugehörigen Rand-
bedingungen (v_ , v + = const) : 

(x, t) = / '_ (0, t — x/v_) exp j a\x , t 
X — X 
V -

d / , (1.1) 

R . S C H A D E , Z . Phys. 1 0 4 , 4 8 7 [ 1 9 3 7 ] . - G . A . K A C H I C K A S u. 
L . H . F I S C H E R , Phys. Rev. 8 8 . 8 7 8 [ 1 9 5 2 ] . - J . D U T T O N , 
S . C . H A Y D O N , F. L L . JONES U. P. M . D A V I D S O N , Brit. J . App l . 
Phys. 4 , 1 7 0 [ 1 9 5 3 ] , 
Der beim Ubergang von der Funktionalgleichung (5) zur 
Gl. (6) zu erwartende Fehler (durch Abrechen der Reihen-
entwicklung) ist nicht vorhanden; es läßt sich nämlich zei-

gen, daß sich die Restglieder der Reihenentwicklungen 
genau aufheben. 

18 Bei einem in Argon gemessenen Stromanstieg ( M . M E N E S , 
Phys. Rev. 116, 481 [ 1 9 5 9 ] ) tritt (wegen hoher Überspan-
nung) eine Abweichung vom exponentiellen Anstieg erst 
bei relativ hohen y-Werten auf. Aus diesem Grund kann 
die hier entwickelte Methode nicht benutzt werden, um den 
Stromanstieg theoretisch zu behandeln. 



7+(*,«)= f j-(x,t- X'r X) a{x\t- (1.2) 
x 

Wir betrachten zunächst die Nachlieferungsgleichung 
d d 

j_ (0, t) =jF(t) + f j_ (x, t) ö(x, t) dx = ;> (t) + 7ph / (x, 0 a(x, t) dx . (1.3) 
0 0 

Durch Einsetzen von (1.1) entsteht 
d 

j_ (0, t) = />(«) + 7ph j_ (0, t-Tvh) { exp / ct(x, t-Tph) d x - 1 } 
o 

d 
= jF(t) +/MPh/_ (0, t-Tph) exp { J 2(x, t-Tph) d x - a 0 d } (1) 

f x/v- exp{/ a(z', £) d:r'}a(x, f) dx 
mit r p h = 0 x ° — ^ d / v A l - i o L o d ) - 1 } . (1.4) 

/' exp{/"a(a;', t) dx}a{x , t ) dx 
o o 

Bei der Umformung von (1.3) wird angenommen, daß sich j_(0,t) in einem Intervall der größenordnungsmäßi-
gen Länge T_/a0d linear verhält und daß die zeitliche Änderung von a(x, t) gering ist (siehe Voraussetzung 4). 
Alle 3t (x, i) -Werte werden auf den Zeitpunkt t — TPh bezogen; auf diese Weise wird berücksichtigt, daß die Gas-
verstärkung der zur Zeit t — Tvh gestarteten Lawinen hauptsächlich durch das an der Kathode erhöhte Feld 
bestimmt ist. Für Tph entsteht in Gl. (1.4) zunächst ein Ausdruck, der a(x,t) enthält; für die hier vorliegenden 
Feldverhältnisse darf mit dem (zeitlich konstanten) Näherungswert gerechnet werden. Der Übergang zur 2. Zeile 
von (1) ist mit geringen Vernachlässigungen verbunden. 

Eine Beziehung zwischen J + (t) und j_ (0, t) gewinnt man aus der 2. TowNSENDSchen Differentialgleichung durch 
Integration über x: 

d 

d / d t l ) = TA[L (x'0 a ( x ' d x 4 
Ö 

= expa°d lj_(0,t-Tvh) exp { / a(x,t-Tph) d x - a 0 ^ } (3) •* + l n 

) 

Die Umformung in dem linken Term der 1. Zeile erfolgt analog zur Umformung bei Gl. (1). Der Term 
j+ (0, t) wird gemäß Gl. (1.2) umgeschrieben; er ist mit dem linken Term nur vergleichbar, falls sich j_ (0, t) in 
dem Zeitraum t — T + ...t wenig geändert hat. Für diesen Fall darf j_ (0, t) als zeitlineare Funktion angesetzt wer-
den; die Integration über x liefert dann den angegebenen Ausdruck. 

Für die Darstellung des Elektronenstromes schreiben wir 
d x 

J_(t)=d~1f j_ (0, t — x/v_) exp | f a(x\ t-Tph) dx'} dx 
0 0 

-j_(0,t-Ti-Tph) exp { / a(x,t-Ti-Tpb) d x - a 0 d } } . 

(a0 d) - 1 j _ (0, t — Tph) | exp j J a(x,t-Tph) dx} - l } (2) 
0 

/ d 
e x p a« a ; (o. t _ Tph) exp { f a (x, t - Tph) d x - a 0 d \ . 

«n d 1 -L ' 

Die Integration in der 1. Zeile läßt sich erst nach Einfügen des Faktors a 0 _ 1 • a(x, t — Tph) im Integranden 
durchführen. Dieser Faktor kann bei starker Raumladungs-Verzerrung erheblich von 1 abweichen; daher ist (2) 
eine relativ schlechte Näherung. Beim Einfügen von (2) in (3) [vgl. (7) ] spielt die Giite der Näherung jedoch 
keine Rolle. Hier wird nur die abkürzende Schreibweise (2) für einen Ausdruck benutzt, der in Gl. (3) auftritt. 



Anhang 2: 

Gleichungen für den Stromanstieg bei 
Vernachlässigung der Raumladung 

Ausgangspunkt ist die Funktionalgleichung (1) mit 

I a dx = a0 d: 
o 

<P(t)=jF(t)+Mvh<p(t-Tph) . (2.1) 

Für jF(t)=qd{t) ist (r = t/Tvh) 
cp (t) = q Tph exp x x (2.2) 

eine Lösung der Gl. (2.1) mit Ausnahme des Zeitinter-
valls 0 < r <C 1. Die Lösung (2.2) ist im wesentlichen 
identisch mit der „asymptotischen Lösung", die sich bei 
der exakten Ausrechnung des Stromanstiegs 19 ergeben 
hat. Insbesondere folgt aus (2.2) ein exponentieller An-
stieg mit der Zeitkonstanten 

X = * = T-J {1 - (a0 d) - 1 } - 1 In . 

Für jp (t) = ; 0 (f > 0) erhalten wir als Lösung von 
(2.1) (ein Koeffizient {/.iph — 1 } _ 1 In ^ph wird nähe-
rungsweise durch 1 ersetzt) : 

<p(r) = /o x '{exp xx— 1} . (2.3) 

Unter Benutzung von (6), (7) und (8) werden folgende Ausdrücke für J + (t) und / _ (f) berechnet: 

x = 0 

jp(t)=qÖ(t) 
/ - = //, exp * ( r —1) Hi (2.4) 

( r < T i + l) 
( T ^ T i + 1) H 

H, 
Ii', 

x~l{exp x(x—l) — 1} 
x ~ 1 {1 — exp (— x Ti) } exp x (r — 1) 

H2{r-1} 
H,x i [ (2.5) 

jF(t)=j0 (t>0) 
J- = Hs a ; - 1 { e x p x(r — \)—\) H3{ r - 1 } (2.6) 

(r < Ti + 1) 
( T ^ T i + 1) ' - I 

H, 
H4 

x-^x^iexpxir-D-l] — (T—1)> 
x~i{x~1 [1 — exp ( — x r;) ] exp x (r— 1) — r;} H4 r i { r - i ti — 1 } 

I | (2.7) 

Hx = 
q exp a0 d 
Tph a0 d 

H,= q exp ct0 d 
T + 

H, Jo exp g„ d 
a„ d 

Ha 
j0 r p h exp a0 d 

T + 

Anhang 3: 

Lösungsverfahren 

Für die numerische Berechnung ist der Übergang 
auf normierte Funktionen zweckmäßig. Wir führen ein: 

r = t/Tp h, Ti = 7,i/7,ph, 

, « - * . / . < « ) . « . - ( ^ T ^ ' (3.1) 

z(r) =K_ !_ ( 0 , K_ = , 

e0 = Dielektrizitätskonstante. 
Dann entsteht folgendes Gleichungssystem: 

i ( T ) = z ( r ) {x + y2(x)} + K_ expa"f/ jp (r) , (3.2) a0 d 
y(x) =z(r)-z(r-Ti) . (3 .3 ) 

Die Anfangsbedingungen sind: 

z(l)=K. e x p a J r Z T-Jg, 2/(1) = 0 . (3.4) 

19 A. v. ENGEL U. M . STEENBECK, Elektrische Gasentladungen, 
Springer-Verlag, Berlin 1934. — W. BARTHOLOMEYCZYK, Z. 
Phys. 116, 235 [1940], - P. M. DAVIDSON, Phys. Rev. 99. 
1072 [1955] ; 103, 1897 [1956] ; 106, 1897 [1956]. -

Bei der Lösung des Gleichungssystems (3.2), (3.3) 
wird die Zeitachse x in Abschnitte der Länge x\ ein-
geteilt. Man rechnet dann die Lösungen y(x), z(r) je-
weils in einem Abschnitt aus und setzt für z(x — x\) die 
schon aus dem vorigen Abschnitt bekannte Funktion 
z(x) ein. Auf diese Weise lassen sich die üblichen Ver-
fahren zur Lösung einer Differentialgleichung verwen-
den. Im allgemeinen ist man bei der Ausrechnung auf 
numerische Verfahren angewiesen. So werden die in 
Abschnitt 3 behandelten Beispiele mit der Methode der 
schrittweisen Approximation von R U N G E - K U T T A (For-
meln 2. Ordnung) berechnet. Es erweist sich als gün-
stig, daß bei dieser Methode die Schrittweite Ax dem 
Charakter der Lösungen angepaßt werden kann; bei 
Beginn des Anstieges kann Ax relativ groß gewählt 
werden, während für den letzten steilen Anstieg ein 
kleines Ax zweckmäßig ist. 

Die folgende Tabelle enthält die bei der Berechnung 
benutzten Werte von F (Querschnitt der Entladung) : 

| Abb. 1, 4 2, 3 5 

F [cm-] 28,6 10,5 100 

Y . MIYOSHI , P h y s . R e v . 1 0 3 , 1 6 0 9 [ 1 9 5 6 ] . - P . L . A U E R , 
Phys. Rev. I l l , 671 [1958]. - J. BÜSER, Arch. Elektrot. 
46. 190 [1961]. 


